
U.S. DEPARTMENT OF COMMERCE
National Institute of Standards and Technology

NISTIR 4334

NationalPDES Testbed

Report Series

nnpc
Administrative

Guide

NATIONAL

U.S. DEPARTMENT OF COMMERCE
National Institute of Standards and Technology

NISTIR 4334

National PDES Testbed

1

TIONAL

. f QDHS
Administrativei

TFSTRFD Guide
Stephen Nowland Clark

U.S. DEPARTMENT OF

COMMERCE

Robert A. Mosbacher,

Secretary of Commerce

National Institute of

Standards and Technology

John W. Lyons, Director

May 21, 1990

Disclaimer

No approval or endorsement of any commercial product by the National Institute of

Standards and Technology is intended or implied

Smalltalk-80 is a trademark of ParcPlace Systems, Inc.

SunView and Sun Workstation are trademarks of Sun Microsystems, Inc.

UNIX is a trademark of AT&T Technologies, Inc.

Table Of Contents

1 Introduction 1

1.1 Context 1

1.2 Smalltalk-80 in 60 Seconds 1

1.3 Trade Secrets 2

2 Architectural Overview 2

2.1 Basic QDES Classes 2

2.2 The Express Connection 3

2.3 Dependents and Change Protocols 3

3 Creating New QDES Images 5

3. 1 Making a New Release 6

3.2 Loading a New Schema 7

4 Common Problems 9

Appendix A: References 12

iii

QDES Administrative Guide

Stephen Nowland Clark

1 Introduction

The Quick-n-Dirty Editor for STEP (QDES) is a prototype editor for STEP product

models [Clark90c]. QDES is distributed with the NIST PDES Toolkit [Clark90a]. This

document provides an overview of administrative procedures for QDES. It should be

read by anybody who will be responsible for installing, maintaining, or upgrading

QDES. Two primary administrative tasks are described: making a new release of

QDES, and loading a new conceptual schema into QDES. An administrator is often

faced with a more nebulous task, as well: namely, to explain curious behavior ("bugs"

or "features") encountered by a user. Some aspects of QDES internals, as well as com-

mon problems, are described to aid in this task. Knowledge knowledge of QDES,
Smalltalk-80™ [Goldberg85] environment, and UNIX™ are all probably helpful in un-

derstanding the issues and procedures discussed.

1.1 Context

The PDES (Product Data Exchange using STEP) activity is the United States’ effort in

support of the Standard for the Exchange of Product Model Data (STEP), an emerging

international standard for the interchange of product data between various vendors’

CAD/CAM systems and other manufacturing-related software [Smith88]. A National

PDES Testbed has been established at the National Institute of Standards and Technol-

ogy to provide testing and validation facilities for the emerging standard. The Testbed

is funded by the CALS (Computer-aided Acquisition and Logistic Support) program of

the Office of the Secretary of Defense. As part of the testing effort, NIST is charged

with providing a software toolkit for manipulating PDES data. This NIST PDES Tool-

kit is an evolving, research-oriented set of software tools. This document is one of a set

of reports which describe various aspects of the Toolkit. An overview of the Toolkit is

provided in [Clark90a], along with references to the other documents in the set.

For further information on QDES or other components of the Toolkit, or to obtain a

copy of the software, use the attached order form.

1.2 Smalltalk-80 in 60 Seconds

If you don’t know Smalltalk-80 at all, here are some points to keep in mind:

• The mouse buttons have non-traditional names in Smalltalk-80. The left, middle,

and right buttons are called red, yellow, and blue, respectively. This is an historical

artifact: the first Smalltalk machine had colored mouse buttons.

QDES Administrative Guide Page 1

Stephen Nowland Clark

• Most functions in the Smalltalk environment are performed using the mouse: the

left (red) button is used for click-and-drag selection, and different popup menus are

associated with each of the other two buttons. These menus often vary with the con-

text in which the cursor is located. Thus, general control menus can be popped up

on the QDES root, while window- or pane-specific menus are available when the

cursor is in a particular window.

• A Smalltalk-80 "program" is saved as a snapshot of the entire state of the environ-

ment at some point in time. This snapshot is saved in an image file with the suffix

. im. The Smalltalk source code (for the system and the application) is contained

in a "sources file," with the suffix . sources. The sources file is not normally

written to during a session. Instead, Smalltalk maintains a "changes file," with the

suffix . changes, which contains a record of all (most) of the actions taken during

the session; these changes can be consolidated and migrated to the sources file pe-

riodically. The sources file can be shared by several users simultaneously; each

user has his own changes file.

• Because a snapshot file stores the complete state of the system at some point in time,

a snapshot taken after an error has occurred can be used to debug the error at a later

date. The changes file can also be used to recover from an error; see "Crash Recov-

ery" in [Parc88].

1.3 Trade Secrets

QDES is not perfect. This is not really a secret! Among other things, see the "Known
Bugs" section of [Clark90c] and the "Common Problems" section of this document.

There is a hidden "programmer’s menu" which can be selected on the QDES root win-

dow. To do this, hold down the left-hand shift button while clicking the yellow (mid-

dle) mouse button. The programmer’s menu pops up, and a selection can be made as

from any other popup menu.

2 Architectural Overview

Although a detailed description of the internals of QDES is beyond the scope of this

document, in this section we give a quick overview to provide background for the ad-

ministrator. Although an understanding of this material is not required for the proce-

dures described in section 3, the administrator should find it useful in explaining

unexpected features of QDES, and in understanding some of the common problems de-

scribed in section 4.

2.1 Basic QDES Classes

Every entity class in QDES’ schema is represented by a Smalltalk-80 class; the inher-

itance structure of the schema is mirrored by Smalltalk’s class hierarchy. Each entity

class is ultimately a subclass of a class called Pdes, which is an abstract class with no

protocol. Pdes inherits from ExpressAbstract, which inherits from Express.

For various practical reasons, two classes are needed at this level, although there is no

QDES Administrative Guide Page 2

Stephen Nowland Clark

conceptual difference between Express and ExpressAbstract. These two class-

es define protocols which are common to all entities and entity classes; thus, a more ap-

propriate name might be Entity. Class variables in Express hold the various

Browser menus, a Scanner for the lexical analysis of user input, the clipboard, and

various state information.

One class variable in Express (called Organization) holds the organizer which

the Browsers examine. The concept of an organizer comes from the Smalltalk-80 im-

plementation of Browsers; there, a global instance of class SystemOrganizer
maintains the list of classes which are visible in a Smalltalk Browser, as well as the

groupings of these classes into categories. Similarly, there is class

ExpressOrganizer which maintains the list of entities known to QDES’ Browsers.

The actual entity instances in a QDES model are stored in an instance of

ExpressEnt ityDict ionary. This seeming near-redundancy of function makes

it much simpler to reuse the Smalltalk Browser classes in QDES.

2.2 The Express Connection

In order to easily support the creation of new entity classes with appropriate protocol,

Express defines a special subclass creation method in the protocol Express
class>subclass creation. This message, which is always sent to class Pdes,

deals with classes which have no explicit superclass, as well as adding appropriate at-

tribute accessing protocol and instance variable type information to the new entity

class.

Fed-X-QDES [Clark90b] reads an Express language [Schenck89] information model

and generates code to invoke this special subclass creation method for each entity class

in the model. In fact, two output passes are made over the populated working form.

The first pass, in (roughly) superclass order, creates all of the entity classes without any

instance variables. In the second pass, the entity classes are redefined with instance

variables and type information; the (Express) types from a particular schema are gen-

erated before the entities from the schema are redefined. This two-pass approach is

necessary because Smalltalk quietly accepts forward references to as-yet-unknown

classes, and does not handle these references properly when the classes are later de-

fined.

2.3 Dependents and Change Protocols

In order to isolate the data being manipulated from user interface details, Smalltalk- 80

uses a paradigm called Model-View-Controller. A Model is a piece of data being ma-

nipulated. It knows nothing about the other two components. A View deals with graph-

ical output. It knows about the Model, and queries it to control screen output. A
Controller deals with user input. It knows about the Model, and can manipulate it.

A Model has an associated list of dependents. These are objects which have expressed

an interest in hearing about changes to the Model. The Model also has a well-defined

"change protocol," an indication of the sorts of changes about which its dependents will

be notified. When a View is created on some Model, the View adds itself to the Mod-

el’s dependent list. Whenever the Model changes, it broadcasts a message to all of its

QDES Administrative Guide Page 3

Stephen Nowland Clark

dependents, according to its change protocol. Each dependent can then choose for itself

how to respond to this notification. So, in a typical interaction, a user will perform

some action (mouse click, keyboard input, etc.), which is interpreted by a Controller.

The Controller sends its Model a message asking it to modify itself in some way. The
Model performs this modification and broadcasts an update : message to its depen-

dents, which are Views. The Views wake up and query the Model to see what has

changed, and then redisplay themselves accordingly.

This same paradigm is used in QDES. There are two kinds of Models which initiate

changed: messages: entity instances and the sole instance of

ExpressEnt ityDict ionary. In addition, the Model of a Browser View is actu-

ally an instance of ExpressBrowser or one of its subclasses. Each of these Brows-

ers depends on the entity dictionary and on the entity instance which is currently

selected. The various subviews of a Browser View also depend on the Browser, and

the individual field Views depend on the selected instance. Figure 1 shows the full de-

pendency graph for a QDES session with a single System Browser whose current se-

lection is a date.

jExprQ3sOrgani2Qr|

lExprossEntityDictionary
I 1 ^'JExprQSsSystQmBrovvytfrU

ExprGS5BrowsorVl«w|

ExprQssFormVlaw

SQlGctionlnUscVlowj

BooloanViaw

BoolaanViQw

ExprossCommontylowj

Figure 1: QDES Dependency Graph

Let’s look at a couple of examples to see how changes get propagated.

First, suppose we change the value of the month attribute of our date. The date object

is eventually sent the message fieldValueAt :
' month' put

:

somelnteger. This method does some finagling, puts the value into the right slot,

and then calls self changed: #value with: 'month'. The

changed : with : message initiates a change broadcast. #value indicates the "as-

pect" of the Model which has changed. ' month' ,
which is an optional parameter in

the change protocol, will help the various dependents determine whether they are inter-

ested in this particular change. Looking at the "updating" protocol for

ExpressSystemBrowser, ExpressFormView, ExpressCommentView,
and ExpressFieldView (which represents the field labels in an entity form), we

find that these objects all ignore updates of the #value aspect. Thus, only the

QDES Administrative Guide Page 4

Stephen Nowland Clark

ExpressTextFieldViews (which display actual attribute values) will respond to

this broadcast, using its update : with : method. Each of these views keeps an indi-

cation of the name of the attribute which it views, and will be interested in the broadcast

only if its with : parameter matches the view’s own field name. Thus, although nine

objects receive the broadcast, only one ends up doing anything about it: the view which

is displaying the value of the month attribute.

Now, suppose we create a new entity instance. Eventually, the entity dictionary re-

ceives the message defineEntity : with some entity instance as a parameter. It

adds this entity to itself, and then sends itself the message changed

:

#organizat ion. The dictionary has only two dependents. When the

ExpressOrganizer is sent update : #organizat ion, it rebuilds its list of en-

tities from the dictionary. (As an aside, note that this is the reason that a file load takes

exponential time under normal circumstances: after each entity is created, the organizer

re-sorts its list. Turning off the display update temporarily removes all of the entity dic-

tionary’s dependents, so that this sorting is not done). The Browser Model ignores up-

dates on this aspect. The second change broadcast from the dictionary, on aspect

#list, is ignored by the organizer but not by the Browser, which turns around and

broadcasts changed : #category to its dependents, the various subviews of the

Browser View (#category is a carry-over from the Smalltalk-80 Browser classes).

The SelectionlnListView, which displays the Browser’s selection pane, re-

sponds by querying the organizer for the new entity list. The #sameSelection pa-

rameter that comes with the dictionary’s broadcast indicates that the current selection

has not changed. Otherwise, the ExpressFormView would respond to this change

by rebuilding itself from the new selection. The change protocol must use two separate

aspects (torganization and #list) to announce the same change in order to en-

sure that the organizer updates itself before the Browser views query it to rebuild them-

selves.

3 Creating New QDES Images

There are two situations in which it becomes necessary to build a new QDES image:

when a new version of the editor is ready to be released, and when a new schema (or a

new version of an old schema) needs to be imported into QDES. The procedure for the

latter is somewhat more involved, and so we address the former first. Throughout these

procedures, the root directory of the QDES distribution is referred to as ~qdes/. In

the current Toolkit distribution, this directory is ~pdes/applicat ions/qdes/.

There is a working directory, ~qdes/ scratch/ which is intended to be used as a

workspace for building new images. Both release procedures begin in this directory.

For the sake of example, assume that QDES is currently at version 2.2, so that the root

name for the three image files is Qdes-2 . 2. (Note: for brevity, ~qdes/ is used

throughout this document to refer to the root directory of the QDES distribution).

A QDES image contains two Projects, or desktops. A user only sees one of these, the

QDES Project. The programmer’s Project contains the normal Smalltalk-80 program-

ming environment, with code Browsers, Workspaces, etc. In particular, it contains two

QDES Administrative Guide Page 5

Stephen Nowland Clark

important workspaces, collapsed to icons labelled "New Schema" and "New Version."

These workspaces contain Smalltalk scripts used in the QDES release procedures. In

the programmer’s project, the QDES project appears as an empty window labelled

"QDES Project." To switch from the programmer’s to the QDES Project, select "enter"

from this icon’s yellow (middle) button menu. To switch back to the programmer’s

Project, select "Smalltalk" from the hidden programmer’s menu.

Most of the work in creating new QDES images is performed by well-tested scripts and

simple UNIX commands. Nonetheless, problems may occasionally arise. These prob-

lems, particularly UNIX errors, should be addressed immediately, as they can have se-

rious repercussions later on. If any of the UNIX commands reports an error, STOP.

Figure out what’s wrong, and correct it before proceeding. If something fails while

you’re in Smalltalk, save the image under a different name (pick "save" from the pro-

grammer’s menu, and type a new name into the Prompter which appears) before exit-

ing. Otherwise, the time you’ve spent in Smalltalk so far is, for all intents and purposes,

lost.

In some cases, it is possible to modify an existing image in place. The basic rule is: if

you make no changes which are logged to the changes file (for the most part, method

compilations and filelns are all that are logged), you needn’t do most of the work de-

scribed in the following sections. Examples of useful changes which are not logged in-

clude rearranging the screen layout (including building new windows) and changing the

state of QDES, for example by turning off display update. In these cases, it is sufficient

to start up QDES in the scratch directory (or elsewhere outside of ~qdes/), make the

changes, and resave the image with the same name. Then exit Smalltalk, make sure no-

body is using the image you’ve modified, and mv the new . im and . changes files

into ~qdes/.

3.1 Making a New Release

This section describes the procedure for building a new release of QDES. The end re-

sult of this procedure will be a virgin image with no schema loaded, called Qde s - 2 . 3.

All Smalltalk menu selections mentioned are from the yellow (middle) button menu,

unless otherwise indicated.

• In ~qdes /scratch/, extract the contents of Qdes-2 . 2 .tar . Z, the current

virgin QDES release:

% uncompress Qdes-2 . 2 . tar .

Z

% tar xvf Qdes-2. 2. tar
• Make symbolic links to scratch/Qdes-2 . 2 . sources and

scratch/Qdes-2 . 3 . sources in ~qdes:

% pushd .

.

% In -s scratch/Qdes-2 . 2 . sources

% In -s scratch/Qdes-2 . 3 . sources

% popd
Both of these links are required, since QDES looks for its sources file in ~qdes/,

and will look for both the old and the new sources file in the course of the session.

QDES Administrative Guide Page 6

Stephen Nowland Clark

3.2

• Start up the image:

% /usr/smalltalk/bin/st 80 Qdes-2.2.im &

QDES will start up in the (normally hidden) programmer’s Project. Make your

changes. This may be done in two ways: a developer may hack directly on this im-

age, or an administrator may have available Smalltalk-80 source code provided by

a developer. In the latter case, the source code must be filed in using a FileList,

available from the Smalltalk root menu. To do this, pick "file list" from the Small-

talk root menu (the middle-button menu on the background) and frame the new win-

dow when prompted. Assuming the source code to be filed in is in the current

directory, type * . st into the top section of the file list, and pick "accept," again

from the middle-button menu. A list of files will appear in the next pane. Select

mySchema . st from this list and pick "file in" from the middle-button menu.

Close the file list when the fileln is complete (pick "close" from the right button

menu).

• Open the "New Schema" workspace (click the left button on the box labelled "New
Schema"). Change all occurrences ofQde s - 2 . 2 to Qde s - 2 . 3 in this workspace.

This will ensure that everything works properly when a schema is later loaded into

this new version. Collapse this workspace after making these changes.

• Look at the "New Version" workspace. It contains a script of the Smalltalk-80 com-

mands needed to build the new image. Change all occurrences of Qde s-new in

this workspace to Qdes-2 . 3 (the new version name). Select the entire contents

of the workspace and pick "do it." This will build Qdes-2 . 3 . sources and save

the new image as Qdes-2 . 3 . im.

• Quit from Smalltalk.

• Make Qdes-2 . 3 . tar . Z:

% tar cvf Qdes-2. 3. tar Qdes-2 . 3 .{ im, changes , sources

}

% compress Qdes-2. 3. tar
• Clean up and install the new image. If you’re brave and don’t want/need to keep

the old version at all, you can rm Qdes-2 . 2 . tar; otherwise,

compress Qdes-2 . 2 . tar. Then:

% rm Qdes-2 . 2 .{ im, changes , sources

}

% rm .. /Qdes-2 . 2 . sources . . /Qdes-2 . 3 . sources
% mv Qdes-2 . 3 .{ im, changes, sources } ..

Loading a New Schema

This section describes the procedure for loading a schema (called mySchema for the

sake of example) into QDES 2.2. The end result of this procedure will be a QDES im-

age called Qdes-2 .
2 -my Schema. If you are replacing an old image called

Qdes-2 .
2 -mySchema (i.e., this is a new version of an existing schema) make sure

that nobody is using it before proceeding. All Smalltalk menu selections mentioned are

from the yellow (middle) button menu, unless otherwise indicated.

QDES Administrative Guide Page 7

Stephen Nowland Clark

• Push mySchema . exp through the Fed-X-QDES translator (for more information

on Fed-X-based Express translators, see [Clark90b]) to get the QDES fileln, and put

the result into the QDES scratch directory:

% fedex_qdes -e mySchema.exp -o mySchema.st
• In ~qdes/scratch/, extract the contents of Qdes-2 . 2 . tar . Z:

% uncompress Qdes-2 . 2 . tar .

Z

% tar xv f Qdes-2. 2. tar
% compress Qdes-2. 2. tar

• Goto~qdes/:

% pushd .

.

• If you are replacing an old image, move its sources file aside:

% mv Qdes-2 . 2-mySchema . sources
Qdes-2 . 2-mySchema . sources . aside

This will save the old sources file, so that you can back out to the old version of the

schema if something goes wrong.

• Make symbolic links to scratch/Qdes-2 . 2 . sources and

scratch/Qdes-2 . 2-mySchema . sources:

% In -s scratch/Qdes-2 . 2 . sources
% In -s scratch/Qdes-2 . 2-mySchema . sources

Both of these links are required, since QDES looks for its sources file in ~qdes/,
and will look for both the old and the new sources file in the course of the session.

• Return to ~qdes/scratch/:

% popd
• Start up QDES:

% /usr/smalltalk/bin/st 80 Qdes-2. 2. im &

QDES will start up in the (normally hidden) programmer’s Project.

• File in the schema to be loaded. To do this, pick "file list" from the Smalltalk root

menu (the middle-button menu on the background) and frame the new window
when prompted. Type *

. st into the top pane of the file list window, and pick "ac-

cept," again from the middle-button menu. A list of files will appear in the next

pane. Select mySchema . st from this list and pick "file in" from the middle-but-

ton menu.

• Get a cup of coffee. Read the paper. The loading process can take as long as several

hours. Leave the mouse in the middle pane of the file list; when the schema is fin-

ished loading, the scrollbar on this pane will reappear. When this happens, close

the file list (with the right-button menu).

• Open the "New Schema" workspace (click the left button on the box labelled "New
Schema"). Change all occurrences of Qdes-2 .

2 -schema in this workspace to

Qdes-2 . 2 -mySchema. Select the entire contents of this workspace and pick "do

it" from the middle button menu.

QDES Administrative Guide Page 8

Stephen Nowland Clark

• Get some more coffee (but not as much as before). Again, the scrollbar will reap-

pear when Smalltalk is ready to proceed, provided that you leave the mouse inside

the workspace. Collapse this workspace (pick "collapse" from the right button

menu).

• Enter the QDES Project (pick "enter" from its yellow button menu), and set up the

screen layout to taste. This might involve creating certain clas hierarchy views

which you would like always to be available, positioning the Feedback window,

and/or creating an initial System Browser,

• Save the image (pick "save" from the hidden programmer’s menu). Call it Qdes-
2 . 2-mySchema. This will be the default value provided when you are prompted

for a name, so you can just hit <return>.

• Quit from Smalltalk/QDES.

• Clean up and install the new image.

% rm Qdes-2 . 2 .{ im, changes , sources

}

% rm .. /Qdes-2 . 2 . sources
% rm .. /Qdes-2 . 2-mySchema . sources
% mv Qdes-2 . 2-mySchema .{ im, changes , sources

}

..

If you are replacing an old image, you should also

% rm .. /Qdes-2 . 2 . sources . aside

.

For safety, you should probably explicitly set the read-write permissions on the new
image files. The convention has been for the . sources file to be read-only, and

the . im and . changes files to be writable only by the owner:

% cd . .

% chmod 644 Qdes-2 . 2-mySchema .{ im, changes

}

% chmod 444 Qdes-2 . 2-mySchema . sources
• Create a script in ~pdes/bin/ to run the new image. Call it qdes -my Schema.

Refer to the template in ~pdes/bin/qdes-template.

4 Common Problems

In this last section, we briefly discuss several problems which QDES users unfortunate-

ly encounter fairly often, and which an administrator is therefore likely to be asked to

address.

• Sometimes Browsers don’t update themselves properly. This may be due to various

known problems or due to some mysterious conjunction of astronomical bodies. In

any case, the first thing to try is to pick "update browser" from the selection pane

menu in any affected Browser; if this doesn’t solve the problem, try a new Browser.

• The bug described above usually has to do with objects vanishing from the entity

dictionary’s dependents list. More often than not, it is the organizer which is lost.

Remember that Browsers base their view of the world on the contents of the orga-

nizer. Thus, even though they know that things are changing, they can’t see these

QDES Administrative Guide Page 9

Stephen Nowland Clark

changes as long as the organizer is not being updated. The workaround is to add the

organizer back into the dictionary’s dependents list, and then to send the dictionary

changed : messages to get the world back in sync:

Express entities addDependent : Express
entityOrganizat ion

.

Express entities changed: torganizat ion

.

Express entities changed: #list with:
same Select ion

.

This code can be executed in the "Bug Workaround" window or in a workspace cre-

ated from the programmer’s menu. Occasionally, a Browser itself will disappear

from the dependents list. The simplest workaround for this is to get rid of the of-

fending Browser and execute the above fix. New Browsers will behave properly.

• Particularly when running a virgin QDES image, it sometimes happens that at-

tempting to browse QDES source code or to execute one of the image release scripts

discussed above results in an error notifier appearing with the message Unhan-
dled exception: File/directory does not exist. This usually

means that Smalltalk cannot find its sources file. Since the sources file is shared

and not writable, it has an absolute path. QDES looks for it in ~qdes/. This is

why it is necessary to create the two symbolic links in ~qdes/ before trying to

build a new image. Make sure that any links created are in the proper directory, are

spelled correctly, and point at the proper files. In extreme circumstances (e.g., if the

sources file has actually been deleted), it may be necessary to back out the a virgin

QDES image and reload the schema.

• It is possible, particularly in older QDES images, for the entity class hierarchy menu
to be utterly wrong. This happens when the menu has been built in a previous im-

age, from a different schema, and never rebuilt from the current schema. The fix

for this is to pick "initialize express" from the programmer’s menu. Since QDES
assumes that this indicates that a new schema has just been loaded, any instantiated

objects in the workspace will be deleted. This initialization is now done automati-

cally by the script to load a new schema, so the problem should vanish rapidly.

• Although this is not immediately obvious, Smalltalk-80 runs inside a Sunview™
window when running on a Sun Workstation. This window can be manipulated just

as any other Sunview window can. Combined with Smalltalk’s fairly slow reaction

to graphical input, this can cause some surprising results. For example, a user might

accidentally select something from the Sunview menu at the window border, per-

haps collapsing Smalltalk to an icon ("Where did it go, and what’s that funny box

that says st80?"). Sunview and Smalltalk refreshes may get out of sync, leaving part

of the screen blank and inaccessible to Smalltalk. A couple of Sunview refreshes

should clear this up.

• There has been a persistent bug in the QDES intermediate file fileOut code. I be-

lieve it has finally been eradicated, but one never knows. Older versions of the

Smalltalk-80 compiler required entity names in quotes (that is, as attribute values)

to be preceded by #. This is no longer necessary, and is, in fact, an error. If a QDES
fileOut file complains about "improper syntax for entity" when filed back in, this is

QDES Administrative Guide Page 10

Stephen Nowland Clark

probably the problem. The workaround for existing QDES files is to globally re-

place ' # with '
. That is, replace quote-hash with quote. The fix in QDES is to

make sure that the method for Express
I
wfString reads

wfString
''self entityName asString printstring

QDES Administrative Guide Page 1

1

Stephen Nowland Clark

A References

[Clark90a] Clark, S. N„ An Introduction to The NIST PDES Toolkit. NISTIR
4336, National Institute of Standards and Technology, Gaithersburg,

MD, May 1990

[Clark90b] Clark, S.N., Fed-X: The NIST Express Translator, NISTIR.

National Institute of Standards and Technology, Gaithersburg, MD,
forthcoming

[Clark90c] Clark, S.N., ODES User’s Guide, NISTIR 4361, National Institute

of Standards and Technology, Gaithersburg, MD, June 1990

[Goldberg85] Goldberg, A. and D. Robson, Smalltalk-80: The Language and its

Implementation, Addison-Weslev, Reading, MA, July, 1985

[Parc88] ParcPlace Systems, The Smalltalk-80 Programming System,

ParcPlace Systems, Mountain View, CA, 1988

[Schenck89] Schenck, D., ed.. Information Modeling Language Express:

Language Reference Manual, ISO TC184/SC4AVG1 Document

N362, May 1989

[Smith88] Smith, B„ and G. Rinaudot, eds.. Product Data Exchange

Specification First Working Draft, NISTIR 88-4004, National

Institute of Standards and Technology, Gaithersburg, MD,
December 1988

QDES Administrative Guide Page 12

ORDER and INFORMATION FORM

MAIL TO:

NATIONAL_

TESTBED —

National Institute of Standards and Technology

Gaithersburg MD., 20899

Metrology Building, Rm-A127

Attn: Secretary National PDES Testbed

(301) 975-3508

Please send the following documents
and/or software:

r 1 Clark, S.N., An Introduction to The NIST PDES Toolkit

| [

Clark. S.N.. The NIST PDES Toolkit: Technical Fundamentals

i

Clark, S.N., Fed-X: The NIST Express Translator

Clark. S.N.. The NIST Working Form for STEP

Clark, S.N., NIST Express Working Form Programmer’s Reference

Clark, S.N., NIST STEP Working Form Programmer’s Reference .

| |

Clark, S.N., ODES User’s Guide

;

~ Clark, S .N., ODES Administrative Guide

Morris, K.C., Translating Express to SQL: A User’s Guide

I I Nickerson, D„ The NIST SOL Database Loader: STEP Working Form to

SOL

! Strouse, K., McLay, M., The PDES Testbed User’s Guide

OTHER (PLEASE SPECIFY)

These documents and corresponding software will be
available from NTIS in the future. Wien available, the

NTTS ordering information will be forthcoming.

rsiisr

nist-1 14A U.S. DEPARTMENT OF COMMERCE
(REV. 3-89) NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY

1. PUBLICATION OR REPORT NUMBER

HISTIR 4334

BIBLIOGRAPHIC DATA SHEET
2. PERFORMING ORGANIZATION REPORT NUMBER

3. PUBLICATION DATE
JULY 1990

4. TITLE AND SUBTITLE

"QDES Administrative Guide"

5. AUTHOR(S)

Stephen Nowland Clark

6. PERFORMING ORGANIZATION (IF JOINT OR OTHER THAN NIST, SEE INSTRUCTIONS)

U.S. DEPARTMENT OF COMMERCE
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
GAITHERSBURG, MD 20899

7. CONTRACT/GRANT NUMBER

8. TYPE OF REPORT AND PERIOD COVERED

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (STREET, CITY, STATE, ZIP)

10.

SUPPLEMENTARY NOTES

DOCUMENT DESCRIBES A COMPUTER PROGRAM; SF-185, FIPS SOFTWARE SUMMARY, IS ATTACHED.

11.

ABSTRACT (A 200-WORD OR LESS FACTUAL SUMMARY OF MOST SIGNIFICANT INFORMATION. IF DOCUMENT INCLUDES A SIGNIFICANT BIBLIOGRAPHY OR
UTERATURE SURVEY, MENTION IT HERE.)

The Product Data Exchange Specification (PDES) is an emerging standard for the exchange
of product information among various manufacturing applications. The neutral exchange
medium for PDES product models is the STEP physical file format. The National PDES
Testbed at NIST has developed QDES , a window-based editor for STEP product models. The
editor, written in Smalltalk 80, is schema-driven: in the Testbed context, an Express
information model is used to describe the objects to be manipulated; QDES itself thus has
no a priori knowledge of its domain. This document describes administrative procedures
for QDES. Some architectural issues are also presented.12.

KEY WORDS (6 TO 12 ENTRIES; ALPHABETICAL ORDER; CAPITAUZE ONLY PROPER NAMES; AND SEPARATE KEY WORDS BY SEMICOLONS)

data modeling; Express; PDES; QDES; schema-independent software; Smalltalk; STEP

13. AVAILABILITY

rt
14. NUMBER OF PRINTED PAGES

X UNLIMITED
18

FOR OFFICIAL DISTRIBUTION. DO NOT RELEASE TO NATIONAL TECHNICAL INFORMATION SERVICE (NTIS).

ORDER FROM SUPERINTENDENT OF DOCUMENTS, U.S. GOVERNMENT PRINTING OFFICE,
WASHINGTON, DC 20402.

--jA.
15. PRICE

AO 2

X.
ORDER FROM NATIONAL TECHNICAL INFORMATION SERVICE (NTIS), SPRINGFIELD, VA 22161.

ELECTRONIC FORM

.r/r
'

-f

